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1. (Exercise 2 of Chapter 5 of [SS03]) Find the order of growth of the following entire
functions:

(a) p(z) where p is a polynomial.

(b) ebz
n
for b ̸= 0.

(c) ee
z
.

Solution. (a) We claim that p(z) has an order of growth 0. Let ρ > 0. Write p(z)
as p(z) = anz

n + an−1z
n−1 + · · ·+ a1z + a0 and we have that

|p(z)|
e|z|p

≤ |an||z|n + · · ·+ |a0|
e|z|p

→ 0 as |z| → +∞

since any exponential grows faster than any polynomial. So |p(z)| ≤ Ape
|z|p for

some Ap > 0. So p(z) has order of growth ≤ ρ. Taking infimum gives ρp = 0.

(b) Let f(z) = ebz
n
for b ̸= 0. We show that f has order of growth n. Clearly, we

have
|f(z)| ≤

∣∣ebzn∣∣ ≤ eb|z|
n

,

so ρf ≤ n.

On the other hand, write b = r0e
iθ0 for some r0 > 0, 0 ≤ θ0 ≤ 2π and consider

z0 = reiθ0/n for any r > 0. Then we see that

|f(z0)| = ebz
n
0 = er0e

iθ0 (reiθ0/n)n = er0r
n

.

If |f(z)| ≤ AeB|z|ρ , then taking r → +∞ above shows it is only possible when
ρ ≥ n, so ρf = n.

(c) We show that ee
z
has infinite order of growth. Let ρ > 0. Then

lim
x→+∞

ee
x

eBxρ = lim
x→+∞

ee
x−Bxρ

= 0

so ρeez = +∞.

◀

2. (Exercise 7 of Chapter 5 of [SS03]) Establish the following properties of infinite
products.

(a) Show that if
∑

|an|2 converges, then the product
∏
(1 + an) converges to a

non-zero limit if and only if
∑

an converges.

(b) Find an example of a sequence of complex numbers {an} such that
∑

an con-
verges but

∏
(1 + an) diverges.
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(c) Also find an example such that
∏
(1 + an) converges and

∑
an diverges.

Solution. (a) Since
∑

|an|2 converges, we know that lim
n→+∞

|an| = 0, so we can

suppose that for n large enough, |an| ≤
1

2
. Hence, without loss of generality

we assume that |an| ≤
1

2
for all n ∈ N in the sequel.

We have that

log(1+an) =
∞∑
k=1

(−1)k+1

k
akn = an+

∞∑
k=2

(−1)k+1

k
akn = an+a2n

∞∑
k=2

(−1)k+1

k
ak−2
n .

So we have

|log(1 + an)− an| =

∣∣∣∣∣an + a2n

∞∑
k=2

(−1)k+1

k
ak−2
n − an

∣∣∣∣∣ =
∣∣∣∣∣a2n

∞∑
k=2

(−1)k+1

k
ak−2
n

∣∣∣∣∣
≤ |an|2

∞∑
k=2

|an|k−2

k
≤ |an|2

∞∑
k=2

|an|k−2

≤ |an|2
∞∑
k=2

1

2k−2
≤ C|an|2

for some universal constant C > 0. This means that since
∑

|an|2 converges,
then

∞∑
n=1

| log(1 + an)− an| ≤
∞∑
n=1

C|an|2

converges.

Now suppose that
∞∏
n=1

(1+an) = exp

(
∞∑
n=1

log(1 + an)

)
converges to a non-zero

limit. In particular this implies that
∞∑
n=1

log(1 + an) converges. Then by above

that

∞∑
n=1

an =
∞∑
n=1

[an − log(1 + an) + log(1 + an)]

=
∞∑
n=1

log(1 + an)−
∞∑
n=1

(log(1 + an)− an)

converges.

On the other hand, suppose that
∞∑
n=1

an converges. Then we see that

∞∏
n=1

(1 + an) = exp

(
∞∑
n=1

log(1 + an)

)
= exp

(
∞∑
n=1

(log(1 + an)− an) +
∞∑
n=1

an

)

converges to a non-zero limit since both sums on the right hand side converges.
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(b) Take an =
(−1)n√

n
. Then since

(
1√
n

)
is a decreasing sequence and lim

n→+∞

1√
n
=

0, the series
∞∑
n=1

(−1)n√
n

converges by the alternating series test. On the other

hand, we see that by Taylor expansion around 0,

log

(
1 +

(−1)n√
n

)
=

∞∑
k=1

(−1)k+1

k

(
(−1)n√

n

)k

=
(−1)n√

n
+

(−1)3(−1)2n

2n
+

∞∑
k=3

(−1)k(n+1)

kn
k
2

=
(−1)n√

n
− 1

2n
+O

(
1

n3/2

)
.

Then we see that

∞∑
n=1

log

(
1 +

(−1)n√
n

)
=

∞∑
n=1

(−1)n√
n

−
∞∑
n=1

1

2n
+

∞∑
n=1

O

(
1

n3/2

)
which diverges since it contains the harmonic series. Hence,

∞∏
n=1

(1 + an) = exp

(
∞∑
n=1

log

(
1 +

(−1)n√
n

))
diverges.

(c) Take an = −1, then we see that
∞∑
n=1

(−1) diverges, but
∞∏
n=1

(1+an) =
∞∏
n=1

(1−1) =

∞∏
n=1

0 = 0.

◀

3. (Exercise 10 of Chapter 5 of [SS03]) Find the Hadamard products for:

(a) ez − 1.

(b) cos πz.

[Hint: The answers are ez/2
∏∞

n=1(1 + z2/4n2π2) and
∏∞

n=0(1 − 4z2/(2n + 1)2))
respectively.]

Solution. (a) Using the Hadamard product for sin z = z
∞∏
n=1

(
1− z2

π2n2

)
, we have

ez − 1 = ez/2
(
ez/2 − e−z/2

)
= 2ez/2 sinh (z/2) = −i2ez/2 sinh

(
iz

2

)
= −i2ez/2

(
iz

2

) ∞∏
n=1

(
1 +

z2

4π2n2

)
= zez/2

∞∏
n=1

(
1 +

z2

4π2n2

)
.



MATH4060 Complex Analysis 4

(b) Using the identity sin(2z) = 2 sin z cos z, and the fact that

sin(2z) = 2z
∞∏
n=1

(
1− 4z2

π2n2

)
,

we have

cos z =
1

2
· 2z

∞∏
n=1

(
1− 4z2

π2n2

)(
z

∞∏
n=1

(
1− z2

π2n2

))−1

=

(
1− 4z2

π2

)(
1− 4z2

4π2

)(
1− 4z2

9π2

)(
1− 4z2

16π2

)(
1− 4z2

25π2

)(
1− 4z2

36π2

)
· · ·(

1− z2

π2

) (
1− z2

4π2

) (
1− z2

9π2

) (
1− z2

16π2

) (
1− z2

25π2

) (
1− z2

36π2

)
· · ·

=
∏
n odd

(
1− 4z2

π2n2

)
=

∞∏
n=0

(
1− 4z2

(2n+ 1)2

)
.

Note that the two solutions above have the following issues: The first is that it
is not clear that the resulting infinite products are indeed the infinite product
that one obtains by applying the Hadamard Factorization Theorem directly.
The above solution for part (b) also has the issue that the cancellation of
infinitely many products needs to be justified. More correct solutions for both
parts is presented below:

(a) Clearly we have that |ez−1| ≤ e|z| for all z, and hence ez−1 has order of growth
≤ 1. Moreover, suppose ez − 1 has order of growth ρ < 1. Then considering
r > 0, we have that there are some positive constants A,B > 0 such that

er − 1 ≤ AeBrρ ⇒ 1 ≤ AeBrρ

er − 1

but we see that since ρ < 1, the right hand side vanishes as r → +∞ and a
contradiction arises. Hence, ez − 1 has order of growth exactly 1.

The function ez − 1 has simple zeros at 2kπi for k ∈ Z. Then the Hadamard
Factorization Theorem gives

ez − 1 = eA+Bzz
∞∏
k=1

E1(z/2kπi)E1(−z/2kπi)

= eA+Bzz

∞∏
k=1

(
1− z

2kπi

)
e

z
2kπi

(
1 +

z

2kπi

)
e−

z
2kπi

= eA+Bzz
∞∏
k=1

(
1 +

z2

4k2π2

)
.

It remains to determine the constants A,B. Since

lim
|z|→0

ez − 1

z
= 1
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we have that A = 0. Moreover, multiplying by e−z/2 on both sides we have

ez/2 − e−z/2 = e(B−1/2)zz
∞∏
k=1

(
1 +

z2

4k2π2

)

and observe that both ez/2 − e−z/2 and z
∞∏
k=1

(
1 + z2

4k2π2

)
are odd functions,

hence e(B−1/2)z is an even function, which forces B = 1/2. So we conclude that

ez − 1 = ez/2z

∞∏
k=1

(
1 +

z2

4k2π2

)
.

(b) Note that for z = x+ iy with x, y ∈ R, we have

| cos πz| =
∣∣∣∣eiπz + e−iπz

2

∣∣∣∣ ≤ 1

2
(|eiπz|+ |e−iπz|) = 1

2
(e−πy + eπy) ≤ eπ|z|.

Hence, cos πz has order of growth ≤ 1. Moreover, the zeroes of cos πz are

± (2k−1)
2

for k = 1, 2, 3, . . . and are all simple. Since
∞∑
k=1

2 · 2
(2k−1)

diverges, we

see that the order of growth of cos πz ≥ 1 and hence the order of growth of
cos πz is exactly 1.

Then by the Hadamard Factorization Theorem, there are constants A,B such
that

cos πz = eA+Bz

∞∏
k=1

E1

(
z

(2k−1)
2

)
E1

(
− z

(2k−1)
2

)

= eA+Bz

∞∏
k=1

(
1− 2z

(2k − 1)

)
e

2z
(2k−1)

(
1 +

2z

(2k − 1)

)
e−

2z
(2k−1)

= eA+Bz

∞∏
k=1

(
1− 4z2

(2k − 1)2

)
.

It remains to determine the constants A,B. Since it is known that cos 0 = 1,
putting z = 0 in the equation above gives

1 = eA ⇒ A = 0.

Since cos πz is known to be even, and clearly the infinite product is also even,
we finally require that eBz is an even function. However, this forces B = 0 as
well. Hence, we conclude that

cosπz =
∞∏
k=1

(
1− 4z2

(2k − 1)2

)
.

◀

4. (Exercise 14 of Chapter 5 of [SS03]) Deduce from Hadamard’s theorem that if F is
entire and of growth order ρ that is non-integral, then F has infinitely many zeros.
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Solution. Since ρ is non-integral, there is an integer k such that k < ρ < k+1. Sup-
pose for the sake of contradiction that F has finitely many zeros, say a1, a2, . . . , aN .
Then Hadamard’s theorem gives

F (z) = eP (z)zm
N∏

n=1

Ek

(
z

an

)
= eP (z)zm

N∏
n=1

(
1− z

an

)
e

z
an

+ z2

2an
+···+ zk

kan

where P (z) is a polynomial of degree k. Then we see that F can be written in the
form G(z)eQ(z) where both G(z) and Q(z) are polynomials and in particular Q(z)
has degree k. So we see that F has order of growth k < ρ, a contradiction. ◀
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